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We elucidate the emergence of first- and second-order phase transitions in superpositions of multifractals.
Using the description from the generalized entropy point of view, we resolve an observed violation of the
convex hull principle. The approach considerably simplifies an earlier discussion and covers new classes of
systems[S1063-651X%97)00806-4

PACS numbgs): 47.53:+n, 05.45+b, 64.60-i

As a consequence of the success of nonlinear dynamicthie sametopological attractor. This situation is related to the
the theory of fractal§1—5] has attracted much interest. Sin- model of parallel iteration [14], where distinct maps are it-
gular measures of multifractal structuf@] were shown to erated on the same topological attractor according to distinct
characterize strange attractdi, diffusion [8,9], and scat- probability distributions(If we stick longer than the embed-
tering processep4,10], turbulence, fractal diffusion-limited ding time to one map, then the product of the systenrots
aggregation[3], etc. This point of view was recently ex- Observed since the trajectories determined by one map typi-
tended to cover more complex cases by considering so-calle&lly evade the neighborhood of trajectories determined by
spatially extended systeni$1]. In a generalized sense, the the other map much too fakt.
system investigated below belongs to this class. It is the pur- In Ref.[12], the superposition of two binary multifractals
pose of this paper to provide an exemplary discussion of th&as considered and for this system the behavior of the
superposition of multifractals, where the discussion is fromf(«) function[3,5—7 was discussed. It was shown that
the entropy point of view. addition to first-order phase transitions that can be expected

Often in experiments the full multifractal structure of the to appear in such situationgransitions of second order
object cannot be accessed. What can be measured is a fracganerge under specific conditions. The derived conditions,
structure, which then typically has a support-independenfowever, could not be formulated in simple terms and the
measure on itAce R:p;=cl; V], see below This measure presented proof was _somewhat involved. In th|§ paper it is
can be the product of a partial overlap due to a projectiorshown how the description from the entropy point of view
from higher-dimensional spaces, or the measure arises quigdves much simpler insight into this phenomenon. Further-
naturally as the sum of different probability measures atmore, the findings of a previous wofk2] are extended by
tached to the same Cantor structure. For this whole class aforking out similar properties of systems based on more
problems, only a few theoretical results have been obtainegomplicated grammars and more than two sources. In addi-
[12]. tion, the discussion refers to a wider context because the

As a typical example for a partial overlap we mention thegeneralized entropy point of view comprises all kinds of spe-
superposition of scattering trajectories on the surface of theific entropy properties and thus goes beyond the discussion
scatterers in the Lorentz-gas problem or the coxistence d¥f f(«).
almost identical fractal attractors that can be observed in sys- For the model, suppose that the sources are complete,
tems of dimensiord>3. A sufficiently general model for self-similar M-scale multifractals. Each of these sources is
different probability measures attached to a Cantor structurghen determined by the probabilitigs, i €{1,2,...,M},
is provided by a neuron with two inputs. This neuron learnsand the associated length scales[1-3]. The hierarchic
two patternszy, 77,, which are sent from a source uncorre- structure of this multiplicative process is captured in the gen-
latedly and stochasticalpd 3], where a binomial distribution eralized partition suni4—7,15
with probabilitiesp;(1),p,(1) for sending pattern 1 and 2,
respectively, is assumed. At sufficiently high learning rates,
upon using a gradient descent learning rule, a chaotic trajec- Z(q,B,N)zz p?lf, (1)
tory characterizes the state of the neuron. Suppose now that, !
after a number of steps of learning due to patterns sent by the
first source, the neuron switches listening to a second sourdghere N_denotes the level of the construction hierarchy.
sending the same patterns, but with different probabilitiedHerej e MN is the symbolicaddress of an allowed contribu-
p1(2),p2(2). After another number of steps, again the neu-tion to the hierarchic procegfor multiplicative measurewe
ron listens to the first source, and so on. In the associatelave pj=p.p.p,--- if j={1,1,2, ...} and allowed means
phase space, this fact is hardly distinguishable from the caghat p;#0). The probabilities are normalized;p;=1. In
where only one source is present since both cases generatgler to labelM independent sources we use the index
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Accordingly, the system is characterized by the set of quan-
tities p;(k),l;(k), i=1,... M andk=1, ... M. In the fol-

lowing we consider the case of the superpositipn

of M multifractal measures, i.e.u=3,u(k), where
k=1,... M. Asimple situation is obtained if the supports of

the k measures are the same and the measures are multipli-
cative. This implies that;(k)=I; for all i=1,... M and
k=1,... M. Forfull binary (i.e., M=2) grammar the par- o
tition sum of the superposition has the form

N) :
j 0.60 [
M q

2 m(kpy()pa(k) ™M | (1), L

(2)

In this formula the parameters(k), k=1,2, are the weights

of the Contrlbu:[lons of t.he .|nvolve(.1. multifractals FIG. 1. Generalized entropy function for a ternary system. Con-
[Z¢m(k)=1]. ForM>2, the binomial coefficient has to be o piot, where the lines increase in steps of 0.1. The corner points
replaced by more involved expressions; nonfull grammargharacterize the scaling properties of the three symbigisre
may sometimes be reduced to full grammars of different typ&iates’). The trace of the specific entropy functibfw) is indicated
[16]. Letting é=]j/N, in order to evaluate the partition sum, py a dashed line.

Z is written as an integrdl12]

0.70 L

N
Z(q,B,N>:j§O

X

1 S(a,e)=F(q,B)+qas+ Be. (6)

Z(q,B,N)~f e NI&aRdg &)
0 Here ¢=—-0F(q,B8)/dB8 is the local scaling rate of

. o ] ~ the support and the “local” dimension arises as

with, specifying for the simplest casé =2 andM =2, a=—[dF(q,B)/3q]/s. Note that it may be preferable to

change the signs af in order to express a different interpre-
g(quvﬂ):gln(g)—i_(l_g)ln(1_§)+(§{_q|n[pl(l)] tationgof the |Sngth sca|es_ p p

—BIN(I DI+ (1—E{—qIn[px(1)] For the discussion of the generalized entropy spectrum we
first recall the general case without superpositiona super-
= BIn(15)})6(E— &)+ (E{—qIn[p1(2)] position of two identical systemsSuch systems do not show
phase transition effects. For a system of ternary grammar, a
~BIn(l)}+(1=){—aln[px(2)] typical entropy function as shown in Fig. 1 is obtained. Note
—BIn(1,))6(&— ), (4)  theline indicating the trace along which the functitfa) is
evaluated.
whered(x) denotes the step function. The special vajyés How can the trace be determined along whidf) is
characterized by the equality of the two contributions; it hasevaluated? It is a simple consequence of the definition of
the value f(a’)::[S(Ol,8)/8]|ﬁ(q):|:(q’ﬂ(q)).:0 that the trace can be

thought to emerge from a simple experimenf. Fig. 1:
Eo=1{1+In[p1(1)/p1(2)1IN[po(1)/px(2)]}Y. (5)  Hold a ruler parallel to the axis, while the left end of the

ruler is at the origin of the coordinate system. Move the ruler
Fractals reveal a deep connection to more traditional fields ofiow towards higher values, with one end still tied to the
physics due to dformal) equivalence of multifractals with (e¢=0,«) axis, while maintaining parallelism with respect to
spin systemg17]. In analogy to the latter, thermodynamic thee axis. The tangential points of the ruler with the entropy
guantities are defined, and nonanalytic behavior of theseurface then yield the line along whi¢la) is evaluated. By
functions can be interpreted as phase transition phenomemaprojection of this line thérace of f(«) in the (,a) plane
[18]. Using this languagef(q,8)=limy_.IN[Z(g,8,N)/N s obtained.
is the generalized free energy7] and we have The entropy function of a single binary system degener-
F(g,8)=—4g(&(q,8),q,8), where £(q,B8) determines the ates into a sheet with one-dimensional support due to the fact
maximum of the integrand in Eq3) by minimizing the that the function §,q)—(e,«) is not injective[19] (in the
functiong, for giveng and 8. Here we wish to elucidate the presence of phase transitions, a two-dimensional support can
appearance of these phase transition phenomena from the obtained.If we consider the superposition of twmnary
generalized entropy point of view, which gives a straightfor-systemswe start off with sheets in the scaling plane &).
ward, unified, and also easier access to the observed phk-can easily be proved that these sheets have to intersect and
nomena. The generalized entropy functi8fa,e) [7,14]  that there are only four cases: the two cases shown in Fig. 2
arises as the Legendre transformr(ig, 8) as and two cases obtained from their reflection about a line
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FIG. 3. Generalized entropy spectrum of a two-source three-
pattern systemM =2, M=3). The trace off(«) in the entropy

FIG. 2. Support obtained for a system of two binary sourcesfunction is indicated by dots. Heavy long-dashed line, second-order
(light lines) with relevant branche@eavy linegin the (e,«) plane.  phase transition line, heavy short-dashed line, first-order phase tran-
The f(«) spectrum is evaluated along the dashed lines; dots indisition line; light dashes, contour lines. In Figs. 2, the areas of first-
cate the phase transition points. The grapH (af) itself is shown order phase transitions are not drawn.
by heavy lines; light lines indicate th€ «) curves associated with
the two systems before superpositida). Both individual entropy jtself can be understood as a phase of its own in the free-
_sheets are ascending afiml one is ascending, the other is desjce”d'energy picture. Entering into this phase can therefore be in-
ing. Note that thef(a) curve of the superimposed systemnist  terpreted as a second-order phase transition. In both cases,
obtainedirom the convex hull of the contributions. the resulting entropy function isot obtained from the con-

vex hull of the contributing individuaf («) functions.

parallel to thea axis through their point of intersection. We e put our work in a wider perspective by considering in
will discuss only the situations shown in Fig. 2; the two addition tof («) other specific entropy functiod&0], which
remaining cases can be discussed analogously. The discugt arise by restriction ofS(e,a) according to some condi-
sion is as follows. Each symbolic addrgssiggers one spe-  tions[e.g., the restriction t@=0 yields the Legendre trans-
cific logarithmic length scale. However, each of the length form g(A) of the Rayi entropiesk(q)]. Most of these spe-
scales is associated with two different measure exponentgfic entropy functions also undergo a first-order transition.
ay, k+1,... M=2. The measure exponents correspond toactually, the whole area between the two branches is an area
probabilities, which themselves correspond to the measurgs first-order transitions that has to be added to the traces
on the Cantor piece labeled by Note now that in the shown in Fig. 2. We see this more clearly if we consider the
asymptotic limitN— < the largest probability dominates and superposition oM =2 ternary systems. For one specific pa-
is the only one that mattei@n our setting,=p(j)x and not  rameter set the result is shown in Fig. 3. As the most notice-
[=p(j)i]" is relevant for the measyreThe largestp(j),  able change in comparison with the superposition of two
corresponds to themallestx(j), . Therefore, only the small- binary systems we note that the intersection point changed
esta will survive. As a consequence, the upper wings are cuinto an intersection line. Entering this line again indicates a
off for the entropy function of the superimposed system. second-order phase transiti@mpare with a corresponding

If now for the superimposed systegnis monitored from  result obtained for a related system[Ri]). The numerical
o to —, in Fig. 2 the ruler starts moving up the branch thatresult shown in Fig. 3 is characteristic in the sense that this
provides the lowestr value. At (Q=1,8=0), invariably a choice of parameters yields in a sense a minimal change of
phase transition appears. This is because at this parameter e picture if more tharM =2 systems are superimposed.
the free energies of both branches are zero. On the twmncreasing the number of contributing ternary maps with ran-
branches, the free energies grow at different rates, whicdomly chosen sets of probabilities yields asymptotically the
yields a first-order transition. The intersection point of theentropy function as shown in Fig. 4. The convergence to-
two branches is characterized by the equality of the free enwards this asymptotic function is very fa@he form is es-
ergies, the length, and the measure exponents. The poitdblished already foM ~25). When such “universal” en-
therefore corresponds to the second intersection ofthg¢  tropy functions of different grammatical types are compared,
curves. In Fig. 2a), where both individual entropy curves are an astonishing property can be deteck&d]: Universal en-
ascending, fog— —o f(a) follows the more narrow indi- tropy functions of simpler grammatical type are identical to a
vidual curve until zero entropy is reached. In Figb)2 the  part of the universal entropy function of higher grammatical
f(a) curve stops at the intersection point. Because of thdype.
above characterization of the intersection point, this point Nonhyperbolicities and superpositions are the main
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on phase transition effects generated by nonhyperbolicities.
The above-discussed models can be seen in connection with
models of multifractals ofM =2 and of M=3 symbols,
which are built from a nonhyperbolic measure on a hyper-
bolic support. There the influence of the phase transition re-
sults in a point of nonhyperbolicity far off from the hyper-
bolic sheet, whereas here the first order transition regime
0. extendsbetweerthe hyperbolic branches. In this comparison,
Fig. 2 corresponds to the system treated in RE3]; Fig. 3
then corresponds to the type of systems discussed in Ref.
[20]. The latter models then were used in order to show that,
upon suitably modifying the system parameters length and
probability scales, phase transitions generated by nonhyper-
bolicities can be moved from one specific entropy spectrum
into another specific entropy spectrdim Ref. [20] from
f(a) into g(A)].
E In conclusion, the generalized entropy representation pro-
vides an excellent tool for the understanding of phase tran-
FIG. 4. Asymptotic entropy function, obtained fir=2000 ter-  Sition effects in multifractals. By using this tool we were able
nary systems. The “batlike” upper part of the entropy sheet is filledt0 €xplain previous findings in a more natural way. We indi-
up with second-order phase transition linéSontour lines are of cated how our approach extends to the discussion of other
distance 0.2. specific entropy functions and we presented results for
classes of multifractals that, to our knowledge, have not been
'Heated before.

mechanisms for generating phase transitions in the ofte
measured spectra of scaling indices. We would therefore like Stimulating discussions with G. Radons are gratefully ac-
to put the present results into this broader context by pointknowledged. This work was partially supported by the Swiss
ing out some relations with earlier works that concentratedNational Science Foundation.
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