
PHYSICAL REVIEW E JUNE 1997VOLUME 55, NUMBER 6
Convex hull violation by superpositions of multifractals
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We elucidate the emergence of first- and second-order phase transitions in superpositions of multifractals.
Using the description from the generalized entropy point of view, we resolve an observed violation of the
convex hull principle. The approach considerably simplifies an earlier discussion and covers new classes of
systems.@S1063-651X~97!00806-4#
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As a consequence of the success of nonlinear dynam
the theory of fractals@1–5# has attracted much interest. Si
gular measures of multifractal structure@6# were shown to
characterize strange attractors@7#, diffusion @8,9#, and scat-
tering processes@4,10#, turbulence, fractal diffusion-limited
aggregation@3#, etc. This point of view was recently ex
tended to cover more complex cases by considering so-ca
spatially extended systems@11#. In a generalized sense, th
system investigated below belongs to this class. It is the p
pose of this paper to provide an exemplary discussion of
superposition of multifractals, where the discussion is fr
the entropy point of view.

Often in experiments the full multifractal structure of th
object cannot be accessed. What can be measured is a f
structure, which then typically has a support-independ
measure on it ('” cPR:pj5cl j ,; j , see below!. This measure
can be the product of a partial overlap due to a project
from higher-dimensional spaces, or the measure arises q
naturally as the sum of different probability measures
tached to the same Cantor structure. For this whole clas
problems, only a few theoretical results have been obtai
@12#.

As a typical example for a partial overlap we mention t
superposition of scattering trajectories on the surface of
scatterers in the Lorentz-gas problem or the coxistence
almost identical fractal attractors that can be observed in
tems of dimensiond.3. A sufficiently general model for
different probability measures attached to a Cantor struc
is provided by a neuron with two inputs. This neuron lea
two patternsh1 ,h2, which are sent from a source uncorr
latedly and stochastically@13#, where a binomial distribution
with probabilitiesp1(1),p2(1) for sending pattern 1 and 2
respectively, is assumed. At sufficiently high learning rat
upon using a gradient descent learning rule, a chaotic tra
tory characterizes the state of the neuron. Suppose now
after a number of steps of learning due to patterns sent by
first source, the neuron switches listening to a second so
sending the same patterns, but with different probabilit
p1(2),p2(2). After another number of steps, again the ne
ron listens to the first source, and so on. In the associ
phase space, this fact is hardly distinguishable from the c
where only one source is present since both cases gen
551063-651X/97/55~6!/6589~4!/$10.00
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thesametopological attractor. This situation is related to th
model ofparallel iteration @14#, where distinct maps are it
erated on the same topological attractor according to dist
probability distributions.~If we stick longer than the embed
ding time to one map, then the product of the systems isnot
observed since the trajectories determined by one map t
cally evade the neighborhood of trajectories determined
the other map much too fast.!

In Ref. @12#, the superposition of two binary multifractal
was considered and for this system the behavior of
f (a) function @3,5–7# was discussed. It was shown that~in
addition to first-order phase transitions that can be expe
to appear in such situations! transitions of second orde
emerge under specific conditions. The derived conditio
however, could not be formulated in simple terms and
presented proof was somewhat involved. In this paper i
shown how the description from the entropy point of vie
gives much simpler insight into this phenomenon. Furth
more, the findings of a previous work@12# are extended by
working out similar properties of systems based on m
complicated grammars and more than two sources. In a
tion, the discussion refers to a wider context because
generalized entropy point of view comprises all kinds of sp
cific entropy properties and thus goes beyond the discus
of f (a).

For the model, suppose that the sources are comp
self-similar M̃ -scale multifractals. Each of these sources
then determined by the probabilitiespi , iP$1,2, . . . ,M̃ %,
and the associated length scalesl i @1–3#. The hierarchic
structure of this multiplicative process is captured in the g
eralized partition sum@4–7,15#

Z~q,b,N!5(
j
pj
ql j

b , ~1!

where N denotes the level of the construction hierarch
Here jPM̃N is thesymbolicaddress of an allowed contribu
tion to the hierarchic process~for multiplicative measureswe
havepj5p1p1p2••• if j5$1,1,2, . . .% and allowed means
that pjÞ0). The probabilities are normalized:( i pi51. In
order to labelM independent sources we use the indexk.
6589 © 1997 The American Physical Society
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Accordingly, the system is characterized by the set of qu
tities pi(k),l i(k), i51, . . . ,M̃ andk51, . . . ,M . In the fol-
lowing we consider the case of the superpositionm
of M multifractal measures, i.e.,m5(km(k), where
k51, . . . ,M . A simple situation is obtained if the supports
the k measures are the same and the measures are mu
cative. This implies thatl i(k)5 l i for all i51, . . . ,M̃ and
k51, . . . ,M . For full binary ~i.e., M̃52) grammar the par-
tition sum of the superposition has the form

Z~q,b,N!5(
j50

N SNj D
3S (

k51

M

p~k!p1~k! j p2~k!~N2 j !D q~ l 1j l 2~N2 j !!b.

~2!

In this formula the parametersp(k), k51,2, are the weights
of the contributions of the involved multifractal
@(kp(k)51#. For M̃.2, the binomial coefficient has to b
replaced by more involved expressions; nonfull gramm
may sometimes be reduced to full grammars of different t
@16#. Letting j5 j /N, in order to evaluate the partition sum
Z is written as an integral@12#

Z~q,b,N!;E
0

1

e2Ng~j,q,b!dj ~3!

with, specifying for the simplest caseM52 andM̃52,

g~j,q,b!5j ln~j!1~12j!ln~12j!1„j$2qln@p1~1!#

2b ln~ l 1!%1~12j!$2qln@p2~1!#

2b ln~ l 2!%…u~j2j0!1„j$2qln@p1~2!#

2b ln~ l 1!%1~12j!$2qln@p2~2!#

2b ln~ l 2!%…u~j02j!, ~4!

whereu(x) denotes the step function. The special valuej0 is
characterized by the equality of the two contributions; it h
the value

j05$11 ln@p1~1!/p1~2!#/ ln@p2~1!/p2~2!#%~21!. ~5!

Fractals reveal a deep connection to more traditional field
physics due to a~formal! equivalence of multifractals with
spin systems@17#. In analogy to the latter, thermodynam
quantities are defined, and nonanalytic behavior of th
functions can be interpreted as phase transition phenom
@18#. Using this language,F(q,b)5 limN→`ln@Z(q,b,N)#/N
is the generalized free energy@7# and we have
F(q,b)52g„j(q,b),q,b…, where j(q,b) determines the
maximum of the integrand in Eq.~3! by minimizing the
functiong, for givenq andb. Here we wish to elucidate th
appearance of these phase transition phenomena from
generalized entropy point of view, which gives a straightf
ward, unified, and also easier access to the observed
nomena. The generalized entropy functionS(a,«) @7,14#
arises as the Legendre transform ofF(q,b) as
n-
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S~a,«!5F~q,b!1qa«1b«. ~6!

Here «52]F(q,b)/]b is the local scaling rate o
the support and the ‘‘local’’ dimension arises a
a52@]F(q,b)/]q#/«. Note that it may be preferable t
change the signs of« in order to express a different interpre
tation of the length scales.

For the discussion of the generalized entropy spectrum
first recall the general case without superposition~or a super-
position of two identical systems!. Such systems do not show
phase transition effects. For a system of ternary gramma
typical entropy function as shown in Fig. 1 is obtained. No
the line indicating the trace along which the functionf (a) is
evaluated.

How can the trace be determined along whichf (a) is
evaluated? It is a simple consequence of the definition
f (a):5@S(a,«)/«#ub(q):F„q,b(q)…50 that the trace can be
thought to emerge from a simple experiment~cf. Fig. 1!:
Hold a ruler parallel to the« axis, while the left end of the
ruler is at the origin of the coordinate system. Move the ru
now towards highera values, with one end still tied to the
(«50,a) axis, while maintaining parallelism with respect
the« axis. The tangential points of the ruler with the entro
surface then yield the line along whichf (a) is evaluated. By
a projection of this line thetraceof f (a) in the («,a) plane
is obtained.

The entropy function of a single binary system degen
ates into a sheet with one-dimensional support due to the
that the function (b,q)→(«,a) is not injective@19# ~in the
presence of phase transitions, a two-dimensional support
be obtained.! If we consider the superposition of twobinary
systems, we start off with sheets in the scaling plane («,a).
It can easily be proved that these sheets have to intersec
that there are only four cases: the two cases shown in Fi
and two cases obtained from their reflection about a l

FIG. 1. Generalized entropy function for a ternary system. C
tour plot, where the lines increase in steps of 0.1. The corner po
characterize the scaling properties of the three symbols~‘‘pure
states’’!. The trace of the specific entropy functionf (a) is indicated
by a dashed line.
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55 6591CONVEX HULL VIOLATION BY SUPERPOSITIONS OF . . .
parallel to thea axis through their point of intersection. W
will discuss only the situations shown in Fig. 2; the tw
remaining cases can be discussed analogously. The dis
sion is as follows. Each symbolic addressj triggers one spe-
cific logarithmic length scale«. However, each of the lengt
scales is associated with two different measure expon
ak , k11, . . . ,M52. The measure exponents correspond
probabilities, which themselves correspond to the meas
on the Cantor piece labeled byj . Note now that in the
asymptotic limitN→` the largest probability dominates an
is the only one that matters„in our setting,(p( j )k

N and not
@(p( j )k#

N is relevant for the measure…. The largestp( j )k
corresponds to thesmallesta( j )k . Therefore, only the small
esta will survive. As a consequence, the upper wings are
off for the entropy function of the superimposed system.

If now for the superimposed systemq is monitored from
` to 2`, in Fig. 2 the ruler starts moving up the branch th
provides the lowesta value. At (q51,b50), invariably a
phase transition appears. This is because at this paramet
the free energies of both branches are zero. On the
branches, the free energies grow at different rates, wh
yields a first-order transition. The intersection point of t
two branches is characterized by the equality of the free
ergies, the length, and the measure exponents. The p
therefore corresponds to the second intersection of thef (a)
curves. In Fig. 2~a!, where both individual entropy curves a
ascending, forq→2` f (a) follows the more narrow indi-
vidual curve until zero entropy is reached. In Fig. 2~b!, the
f (a) curve stops at the intersection point. Because of
above characterization of the intersection point, this po

FIG. 2. Support obtained for a system of two binary sour
~light lines! with relevant branches~heavy lines! in the («,a) plane.
The f (a) spectrum is evaluated along the dashed lines; dots i
cate the phase transition points. The graph off (a) itself is shown
by heavy lines; light lines indicate thef (a) curves associated with
the two systems before superposition.~a! Both individual entropy
sheets are ascending and~b! one is ascending, the other is descen
ing. Note that thef (a) curve of the superimposed system isnot
obtainedfrom the convex hull of the contributions.
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itself can be understood as a phase of its own in the fr
energy picture. Entering into this phase can therefore be
terpreted as a second-order phase transition. In both ca
the resulting entropy function isnot obtained from the con-
vex hull of the contributing individualf (a) functions.

We put our work in a wider perspective by considering
addition tof (a) other specific entropy functions@20#, which
all arise by restriction ofS(«,a) according to some condi
tions @e.g., the restriction tob50 yields the Legendre trans
form g(L) of the Rényi entropiesK(q)#. Most of these spe-
cific entropy functions also undergo a first-order transitio
Actually, the whole area between the two branches is an a
of first-order transitions that has to be added to the tra
shown in Fig. 2. We see this more clearly if we consider
superposition ofM52 ternary systems. For one specific p
rameter set the result is shown in Fig. 3. As the most not
able change in comparison with the superposition of t
binary systems we note that the intersection point chan
into an intersection line. Entering this line again indicate
second-order phase transition~compare with a correspondin
result obtained for a related system in@21#!. The numerical
result shown in Fig. 3 is characteristic in the sense that
choice of parameters yields in a sense a minimal chang
the picture if more thanM52 systems are superimpose
Increasing the number of contributing ternary maps with r
domly chosen sets of probabilities yields asymptotically
entropy function as shown in Fig. 4. The convergence
wards this asymptotic function is very fast~the form is es-
tablished already forM;25). When such ‘‘universal’’ en-
tropy functions of different grammatical types are compar
an astonishing property can be detected@14#: Universal en-
tropy functions of simpler grammatical type are identical to
part of the universal entropy function of higher grammatic
type.

Nonhyperbolicities and superpositions are the m

s
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-

FIG. 3. Generalized entropy spectrum of a two-source thr
pattern system (M52, M̃53). The trace off (a) in the entropy
function is indicated by dots. Heavy long-dashed line, second-o
phase transition line, heavy short-dashed line, first-order phase
sition line; light dashes, contour lines. In Figs. 2, the areas of fi
order phase transitions are not drawn.
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6592 55R. STOOP AND W.-H. STEEB
mechanisms for generating phase transitions in the o
measured spectra of scaling indices. We would therefore
to put the present results into this broader context by po
ing out some relations with earlier works that concentra

FIG. 4. Asymptotic entropy function, obtained forN52000 ter-
nary systems. The ‘‘batlike’’ upper part of the entropy sheet is fil
up with second-order phase transition lines.~Contour lines are of
distance 0.2.!
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on phase transition effects generated by nonhyperbolicit
The above-discussed models can be seen in connection
models of multifractals ofM̃52 and of M̃53 symbols,
which are built from a nonhyperbolic measure on a hyp
bolic support. There the influence of the phase transition
sults in a point of nonhyperbolicity far off from the hype
bolic sheet, whereas here the first order transition reg
extendsbetweenthe hyperbolic branches. In this compariso
Fig. 2 corresponds to the system treated in Ref.@19#; Fig. 3
then corresponds to the type of systems discussed in
@20#. The latter models then were used in order to show th
upon suitably modifying the system parameters length
probability scales, phase transitions generated by nonhy
bolicities can be moved from one specific entropy spectr
into another specific entropy spectrum@in Ref. @20# from
f (a) into g(L)#.
In conclusion, the generalized entropy representation p

vides an excellent tool for the understanding of phase tr
sition effects in multifractals. By using this tool we were ab
to explain previous findings in a more natural way. We in
cated how our approach extends to the discussion of o
specific entropy functions and we presented results
classes of multifractals that, to our knowledge, have not b
treated before.

Stimulating discussions with G. Radons are gratefully
knowledged. This work was partially supported by the Sw
National Science Foundation.
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